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Figure 1: Perceptual and cognitive models of the costs in visualization processes should be essential parts of visualization effectiveness models.
Since the alternative data representations have the same amount of information as the original boxplot figure, a model which fails to account for
such costs must rate all these visualizations equally well, while they clearly are not all equally effective.

ABSTRACT

The search of an appropriate, effective and comprehensive model for
the effectiveness of visualization is one of the most important open
theoretical problems in the field. Information theory provides an
alluring set of tools and concepts which elucidate some of the goals
of visualization. We argue here that any effectiveness model must
include an equally effective model of perceptual and cognitive costs,
since information content cannot by itself tell the difference between
visualizations which vary wildly in their effectiveness. We argue
that direct inspection of brain activity (in our case, through EEG)
can be used to inform the research into such perceptual cognitive
costs, and present a description of how this is being currently carried
out.

1 INTRODUCTION

To say that Shannon’s information theory has revolutionized the
theory and practice behind communication channels is an under-
statement. It has changed the practice so fundamentally, and with
such broad applicability and depth that it is fairer to say it effectively
created the field as it is studied now. Visualization, on the other hand,
seems to lack such a basis. Because the goal of visualization is much
less well-defined than that of communication theory, it might seem
foolish to look for a model that can yield comparably remarkable
successes.

Still, information theory is an attractive candidate for modeling
the effectiveness of visualizations. It is clear that at some level,
a visualization tries to facilitate the transfer of information into
the practitioner’s mind, and information theory has much to say
about how effectively we can hope to transfer information. In fact,

information theory has already yielded applicable techniques for
visualization. The principle of entropy maximization, in particular,
is a well-known mechanism for picking visualization parameters
which “increase the information output” of a picture or visualization.
Examples include camera selection in both surface [13] and volume
rendering [17], high-dimensional view selection [15], and isosurface
navigation [3]. Even simple techniques like histogram equalization
and banking to 45 degrees [7] can be seen as instances of entropy
maximization.

Particularly relevant to our discussion is the work of Chen and
Jänicke [5] who show how to interpret many concepts in visualiza-
tion in light of information theory. Could we reduce, then, most or
all of visualization to representing the original information in a way
which loses the fewest amount of information? Alas, this cannot
work: consider the task of comparing different probability distribu-
tion functions over a subset of the natural numbers (say, from zero to
one hundred). While a visualization practitioner knows in their sleep
that one appropriate answer to that question is to use, for example, a
boxplot such as the one shown in Figure 1, the information content
of this visualization is actually less than simply writing out all of the
numerical values. We seem to be in trouble: a list of values is the
folklore answer for the worst possible visualization, and yet it has
exactly all the content of the original data. An even more extreme
example is the one arrived by a random shuffling of the pixels in
an image. Even with full knowledge of the actual permutation, it is
impossible to get any visual information out of the plot.

One could hope to salvage the idea by an argument of economy:
perhaps we must eliminate “useless” information in the visualization.
After all, the box plot is much more economical than the list of dis-
tribution values. Consider, however, the printout of the compressed
encoding of a PNG file of said boxplot: it is as economical as the
PNG file, but the visual encoding of the image file is obviously much
better than a character dump of the file.

In addition, this notion of “useless” information only makes sense



in the context of asking a particular question about the data. And
in that case we must again be careful with our models, since the
most economical visualization for the question “is the median of
this distribution less than 50?” is not one using Tukey bars, central
moments or violin plots: it is simply the word “YES” or “NO”
displayed on the screen.

So while there are good reasons to be wary of including percep-
tual and cognitive concerns in the communication channel induced
by a visualization, these concerns must play a central role in a quan-
titative model of effectiveness. A model which lacks these notions
is doomed to claim the representations in Figure 1 are all equally
effective visualizations. We want to emphasize here that we share
the vision of Chen and Jänicke that information theory has a large
potential impact in the theory and practice of visualization. How-
ever, quantitative models of the perceptual and cognitive cost of
processing these visualizations cannot be treated separately from the
rest of the process.

2 MEASURING THE COST OF PROCESSING INFORMATION
VISUALLY

While we do not yet have a model which takes into consideration
these costs, we now discuss how these models might be constructed
using data collected from physiological measurements of subjects
during visualization tasks.

Ignoring reflexive actions like the proverbial knee-jerk, it is well-
accepted that both learning and decision making processes must
somehow process acquired data (in our case, through the visual sys-
tem) to facilitate understanding [11]. The idea of using comprehen-
sion and cognitive measures to determine the effects of illustration
has attracted attention in the fields of memory [9], aging [6], and the
visualization of chart data [14].

Comprehension and cognitive uptake are typically studied us-
ing indirect methods. Agarwal and Karahanna note that individual
attitude and behavior influence cognitive absorption and compre-
hension [1]. Additionally, measuring cognitive ability is known to
be confounded by practice during a task, further complicating user
studies [8]. In order to address the complications of determining
cognitive assets, Brünken et al. suggest directly measuring cognitive
load [4], using functional magnetic resonance imaging (fMRI). As
part of ongoing collaboration with a team of neuroscientists and
a clinical psychiatrist, we are employing electroencephalography
(EEG) to directly inspect brain activity during visualization tasks.

Since EEG measures brain activity at high spatial and temporal
resolutions, it provides a mechanism to monitor memory and cog-
nition centers of the brain. Additionally, as cognitive activity is
associated with specific frequency characteristics [12], we can use
signal processing to help pinpoint the types of loads placed on the
human cognitive system and its performance during visualization
tasks. Some preliminary results suggest that different plot types with
the same information content cause significantly different measure-
ments in the brain activity of subjects being studied. In addition,
these differences in the electric measurements are consistent with
there being different cognitive loads. This first study was intended
to determine whether EEG measurements are powerful enough to
determine cognitive load for visualization tasks. We believe a similar
study protocol can be used to investigate other visualization choices,
hopefully leading to an experimentally-justified model of the cost of
a visualization.

We note here that a model using only cognitive costs cannot pos-
sibly work either. For example, if we consider the question “does the
distribution have median less than 50?”, then the visualization with
lowest cost will be the one which simply computes the appropriate
answer and displays a large “YES” or “NO” on the screen. The
problem here is that although such a visualization has low cognitive
cost, it cannot have a large information content. Hence, we envision
a model in which information-theoretical concerns are optimized

together with cognitive costs.

3 ARE ANY MODELS POSSIBLE, EVEN IN PRINCIPLE?
The shortcomings of purely quantitative measures of visualization
quality become more evident when considering artistic elements
in visualization. The minimalistic representations advocated by
Edward Tufte [16] notoriously clash with the embellishments cham-
pioned by designers such as Nigel Holmes [10]. In recent work,
the arguments both for and against “chart junk” are put to the test
by Bateman et al. [2]. This study examines the effects of stylized
artistic decoration on the comprehension and cognitive recall of
charts. While representations focused on maximizing “data ink” fit
well into information-theoretical systems including entropy and ca-
pacity as discussed by Chen and Jänicke, Bateman et al.’s unintuitive
result that “chart junk” sometimes appears to be helpful serves as
a warning sign that modeling the effectiveness might require even
higher-level information than the comprehension and cognition load
we are studying.

Still, we believe the integration of even reasonably low-level
cognitive concerns in a model of visualization effectiveness is the
right place to start, and might serve as a valuable complement to the
already-existing information-theoretical models of visualization.
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